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Abstract— The introduction of the LN5 and mLN5 distributions extends the commonly 
used three-parameter log-normal distribution (LN3) by enhancing tail modeling, which is 
critical for accurate representation of extreme values in hydrology and climatology. This 
paper details two methods for parameter estimation: the established local maximum 
likelihood method and the newly developed triangular method, an adaptation of the relative 
least squares approach. The effectiveness of these distributions is demonstrated through 
their application to datasets from the Czech Hydrometeorological Institute, encompassing 
average daily flow, precipitation, atmospheric pressure, and air temperature. Results show 
significant improvements in modeling extreme events with LN5 and mLN5 over LN3, as 
well as over other compared distributions such as generalized Gamma and generalized 
Weibull, particularly in tail behavior, underscoring their potential for advancing 
environmental studies. Appendices include comprehensive derivations of the functional 
characteristics of LN5 and mLN5 and introduce an alternative parametrization for LN5. 
 
Key-words: exceedance curve, five-parameter log-normal distribution, maximum 
likelihood estimate, modified five-parameter log-normal distribution, triangular method 
 
Highlights:  
Introduces LN5 distribution and its modification and derives their characteristics. 
Applies LN5 to data, compares them with existing models with superior performance. 
Enhances approximation of distribution tails to better represent extreme values. 
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1. Introduction 

Exceedance curves are essential in analyzing hydrological and climatological 
data, offering insights into the likelihood of surpassing specific values, crucial for 
developing empirical or theoretical models. These curves, essentially inverse 
survival functions, often employ the three-parameter log-normal distribution 
(LN3) (Sangal and Biswas, 1970), Weibull or gamma distributions. Also more 
flexible alternatives to these classical choices as generalized Weibull distribution 
(Mudholkar et al, 1996), generalized gamma distribution (Cox et al., 2007), or 
two-piece distributions (Rubio and Hong, 2016) were suggested in literature. 
However, these distributions may not accurately represent all data ranges, 
especially in small drainage basins, and can lead to unrealistic extrapolations at 
extreme probabilities (Budík, 2018). We propose the five-parameter log-normal 
distribution (LN5) and its modified version (mLN5) as superior alternatives, 
providing better fits and more accurate extrapolations (Budík, 2018, 2019). 
Contributions, briefly suggested LN5 and mLN5 distributions, omitting the 
derivation of their functional characteristics. This paper details the functional 
characteristics of LN5 and mLN5 and their application to real-world data and 
shows the advantages of LN5 and mLN5 distributions compared to the 
aforementioned distributions used in hydrological and climatological practice. 

The analysis of hydrological and precipitation data shows discrepancies 
between the theoretical curves and actual measurements for the different 
distributions mentioned above, especially for the LN3 distribution, which is 
commonly used in hydrological and climatological practice. Accurate midrange 
estimation is crucial, but with climate change causing shifts towards extreme 
events, estimating extremes becomes equally important. The LN5 distribution, 
based on our experience, effectively addresses these issues, offering several 
advantages: 
a) Near-accurate modeling of exceedance curves and quality extrapolations for 

large datasets across a range of probabilities, confirmed by a simulation 
study (Budík and Budíková, 2020). 

b) Enhanced modeling of extremely small and large values, crucial for 
estimating probabilities of significant climatic and hydrological events in the 
context of climate change. 

c) Greater flexibility in modeling exceedance curves, allowing for precise 
differentiation of regional climatic or hydrological characteristics. 

d) Ability to detect some primary data processing inaccuracies in hydrological 
data application. 

e) When applied to long-term climatological and hydrological data, LN5 or 
mLN5 parameters are interpretable and can reveal changes in these 
quantities, correlating with climate trends and landscape drying. 
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This paper presents the LN5 and mLN5 distributions’ density and 
distribution functions, parameter estimation methods, and applications to real 
data. We also describe the triangulation method with inverse transformation, a 
robust estimation approach for natural process-generated data. Previously, LN5, 
mLN5, and the triangulation method were only suggested for one dataset in 
conference proceedings; this paper provides a theoretical foundation and shows 
its usefulness in broader context, specifically on applications on hydrology and 
climatology data. 

The paper is structured as follows: The Methods section discusses the 
exceedance curve and its relationship to the survival function. The Theory section 
introduces the LN5 and mLN5 distributions and covers methods for parameter 
estimation. The Results section applies these findings to real data. The paper 
concludes with a discussion on the approach’s advantages and limitations in the 
final section. The appendices include theoretical derivations, an explanation of 
alternative parameterizations, graphs of PDF and CDF functions, a comparison of 
LMLE estimates for the Morava and the Dyje Rivers, and results from a prior 
simulation study. 

2. Methods 

In practice, the empirical exceedance curve, theoretical exceedance curve (Lane, 
2002), and survival function (see Fig. 1) are key concepts for analyzing the 
probability of an observed variable surpassing a certain threshold, commonly used 
in studying extreme events like floods, earthquakes, or financial market crashes. 
The empirical exceedance curve plots the descending values of a variable (on the 
vertical axis) against the estimated probabilities of exceeding these values (on the 
horizontal axis). The probability of exceeding a given threshold is estimated as 
the relative frequency of data points above each threshold. The theoretical 
exceedance curve, derived from a probability distribution model, arranges the 
quantiles of the chosen probability distribution in descending order on the vertical 
axis, and the corresponding exceedance probabilities are plotted on the horizontal 
axis. The theoretical exceedance curve can be used to estimate the probability of 
outliers beyond the observed data range. The survival function, inversely related 
to the theoretical exceedance curve, indicates the probability that the variable’s 
realization will exceed a specific value. It is crucial in assessing survival 
probabilities or durations across various fields. 
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Fig. 1. A. The empirical exceedance curve (blue solid line) and the theoretical exceedance curve 
(black dashed line). B. The empirical survival function (blue solid line) and the theoretical 
survival function (black dashed line). 

 

 

In summary, while the empirical exceedance curve is based on the measured 
data, the theoretical exceedance curve is based on a model of the underlying 
probability distribution, and the survival function is the inverse of the exceedance 
curve. Obtaining the best theoretical exceedance curve is necessary to estimate 
the magnitude of extreme events at a given probability of exceedance. To advance 
this modeling, we introduce the LN5 and mLN5 distributions for constructing 
exceedance curves. The upcoming Theory section will detail new results 
regarding the characteristics and parameter estimation methods of these 
distributions. Subsequently, in the Results section, we will demonstrate the 
application of these distributions to hydrology and climatology data. 

3. Theory 

In this section, we derive new LN5 distributions as generalizations of the three-
parameter log-normal distribution LN3 (Sangal and Biswas, 1970). 

3.1. Fundamental five-parameter log-normal distribution 

Let 𝑋 ∼ Nሺ𝜇,𝜎ଶሻ be a normally distributed random variable with mean 𝜇 and 
variance 𝜎ଶ. Let 𝑎, 𝑏 ∈ ℝା, 𝑦଴ ∈ ℝ. Random variable 𝑌 defined by the 
transformation 
 

 𝑌 ൌ 𝑎 expሺsgn𝑋 ⋅ |𝑋|௕ሻ ൅ 𝑦଴, (1) 
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which follows the five-parameter log-normal distribution, i.e., 𝑌 ∼
LN5ሺ𝑎, 𝑏, 𝜇,𝜎ଶ,𝑦଴ሻ, and the parameter vector is denoted by 𝜽 = ሺ𝑎, 𝑏, 𝜇,𝜎ଶ,𝑦଴ሻ. 

It is important to recognize that the parameters influence the shape of the 
distribution function’s graph. The location parameter 𝑦଴ shifts the distribution. 
Parameter 𝑎, shape parameter in general, is a parameter of scale if 𝑦଴ = 0. The 
remaining parameters 𝑏, 𝜇, 𝜎ଶ are shape parameters. In particular, 𝜇 and 𝜎ଶ 
correspond to the mean and variance of an inversely transformed random variable 

 

sgnሺ𝑌 − 𝑎 − 𝑦଴ሻlnଵ௕൫((𝑌 − 𝑦଴ሻ 𝑎⁄ )sgn(௒ି௔ି௬బ)൯. 
 

The probability density, cumulative distribution, and quantile functions of 
the five-parameter log-normal distribution take the following form. 

 

Probability density function 

 𝑓(𝑦,𝜽)  
=
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 1√2𝜋𝜎 ⋅ lnଵି௕௕ ቀ 𝑎𝑦 − 𝑦଴ቁ𝑏(𝑦 − 𝑦଴) ⋅ exp൞− (−lnଵ௕ ቀ 𝑎𝑦 − 𝑦଴ቁ − 𝜇)ଶ2𝜎ଶ ൢ ,  𝑦 ∈ (𝑦଴,𝑦଴ + 𝑎),

1√2𝜋𝜎 ⋅ lnଵି௕௕ ቀ𝑦 − 𝑦଴𝑎 ቁ𝑏(𝑦 − 𝑦଴) ⋅ expቐ− (lnଵ௕ ቀ𝑦 − 𝑦଴𝑎 ቁ − 𝜇)ଶ2𝜎ଶ ቑ ,  𝑦 ∈ (𝑦଴ + 𝑎,∞),0,  otherwise.
 (2) 

 

Cumulative distribution function 

𝐹(𝑦,𝜽) =
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧0,  𝑦 ∈ (−∞,  𝑦଴),12 ൦1 + erf൮−lnଵ௕ ቀ 𝑎𝑦 − 𝑦଴ቁ − 𝜇√2𝜎 ൲൪ ,  𝑦 ∈ [𝑦଴ ,𝑦଴ + 𝑎),

12 ൦1 + erfቌlnଵ௕ ቀy − 𝑦଴𝑎 ቁ − 𝜇√2𝜎 ቍ൪ ,  𝑦 ∈  [𝑦଴ + 𝑎,∞).
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Quantile function 𝐹ିଵ(𝛼,𝜽) = ቊ𝑎 exp൛−[−𝜇 − √2𝜎 erfିଵ(2𝛼 − 1)]௕ൟ + 𝑦଴,  𝛼 ∈ 𝐼ଵ,𝑎 exp൛[𝜇 + √2𝜎 erfିଵ(2𝛼 − 1)]௕ൟ + 𝑦଴, 𝛼 ∈ 𝐼ଶ, 
where 

 𝐼ଵ = ൬0, 12 ൤1 + erf ൬ −𝜇√2𝜎൰൨൰ , 𝐼ଶ = ൬12 ൤1 + erf ൬ −𝜇√2𝜎൰൨ , 1൰,  

erf is the error function and derivation of Eqs.(2)–(4) and further details on 𝑓(𝑦,𝜽), 𝐹(𝑦,𝜽), and 𝐹ିଵ(𝛼,𝜽) are listed in Appendix A of the Supplementary 
material, while probability density functions and cumulative distribution 
functions for various parameters are depicted in Appendix D of the 
Supplementary material. 

3.2. Modified five-parameter log-normal distribution (mLN5) 

The density of the LN5 distribution with parameter 𝑏 ≠ 1 is not a smooth 
function, which often does not align with the nature of the data. To address this 
issue, we have introduced a novel version of the LN5 distribution, the mLN5, 
which is achieved by modifying the transformation Eq.(1). Additional details can 
be found in Appendix B of the Supplementary material, while probability density 
functions and cumulative distribution functions for various parameters are 
depicted in Appendix D of the Supplementary material. 

Let 𝑋 ∼ N(𝜇,𝜎ଶ) be a normally distributed random variable. Let 𝑎, 𝑏 ∈ ℝା, 
and 𝑦଴ ∈ ℝ. Random variable 𝑌, a transformation of 𝑋 in the form 

 
 𝑌 = ቊ𝑎 expሼsgn𝑋 ⋅ |𝑋|௕ሽ + 𝑦଴,  |𝑋| ≥ 1,𝑎 exp൛sgn𝑋 ⋅ |𝑋|௕ା(ଵି௕)(ଵି|௑|)ൟ + 𝑦଴,  |𝑋| < 1, (3) 

 

follows the modified five-parameter log-normal distribution, i.e. 
mLN5(𝑎, 𝑏, 𝜇,𝜎ଶ,𝑦଴), and the parameter vector is denoted by  𝛉 = (𝑎, 𝑏, 𝜇,𝜎ଶ,𝑦଴). 

We define function 𝑡 that describes transformation Eq.(3) on open sets 
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𝑡(𝑥) = ⎩⎪⎨
⎪⎧𝑡ଵ(𝑥) = 𝑎 expሼ−(−𝑥)௕ሽ + 𝑦଴,  𝑥 ∈ 𝐺ଵ = (−∞,−1),𝑡ଶ(𝑥) = 𝑎 exp൛−(−𝑥)௕ା(ଵି௕)(ଵା௫)ൟ + 𝑦଴,  𝑥 ∈ 𝐺ଶ = (−1,0),𝑡ଷ(𝑥) = 𝑎 exp൛𝑥௕ା(ଵି௕)(ଵି௫)ൟ + 𝑦଴,  𝑥 ∈ 𝐺ଷ = (0,1),𝑡ସ(𝑥) = 𝑎 expሼ𝑥௕ሽ + 𝑦଴, 𝑥 ∈ 𝐺ସ = (1,∞).  

 

Let’s denote the image of function 𝑡 on a given set 𝐺௝ as 𝐻௝ = 𝑡൫𝐺௝൯, 𝑗 = 1, … ,4 
and define a function 𝜏௝ as an inverse function to the 𝑡௝ on 𝐻௝ for 𝑗 = 1, … ,4, 
 𝜏ଵ(𝑦) = −lnଵ௕ ൬ 𝑎𝑦 − 𝑦଴൰ , 𝑦 ∈ 𝐻ଵ = (𝑦଴,  𝑎eିଵ + 𝑦଴) 

𝜏ସ(𝑦) = lnଵ௕ ቀ𝑦 − 𝑦଴𝑎 ቁ , 𝑦 ∈ 𝐻ସ = (𝑎e + 𝑦଴,  ∞), 
 

where 𝑥 = 𝜏ଶ(𝑦) is the solution of equation 𝑦 = 𝑡ଶ(𝑥) for 𝑦 ∈ 𝐻ଶ =(𝑎eିଵ + 𝑦଴,  𝑎 + 𝑦଴). Similarly, 𝑥 = 𝜏ଷ(𝑦) is the solution of equation 𝑦 = 𝑡ଷ(𝑥) 
for 𝑦 ∈ 𝐻ଷ = (𝑎 + 𝑦଴,  𝑎e + 𝑦଴). Let 𝜏′௝(𝑦) denote derivatives of functions 𝜏௝ 
with respect to 𝑦 for 𝑗 = 1, … ,4. 

The probability density, cumulative distribution, and quantile functions of 
the five-parameter log-normal distribution take the following form. 

 
 

Probability density function 
 

𝑓(𝑦,𝜽)  =
⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧ 1√2𝜋𝜎  exp ቊ− 12𝜎ଶ ൤lnଵ௕ ൬ 𝑎𝑦 − 𝑦଴൰ + 𝜇൨ଶቋ |𝜏′ଵ(𝑦)|, 𝑦 ∈ (𝑦଴,  𝑎eିଵ + 𝑦଴)1√2𝜋𝜎  exp ൜− 12𝜎ଶ [𝜏ଶ(𝑦) − 𝜇]ଶൠ |𝜏′ଶ(𝑦)|, 𝑦 ∈ ( 𝑎eିଵ + 𝑦଴,𝑎 + 𝑦଴),1√2𝜋𝜎  exp ൜− 12𝜎ଶ [𝜏ଷ(𝑦) − 𝜇]ଶൠ |𝜏′ଷ(𝑦)|,  𝑦 ∈ (𝑎 + 𝑦଴,𝑎e + 𝑦଴),1√2𝜋𝜎  exp ቊ− 12𝜎ଶ ൤lnଵ௕ ቀ𝑦 − 𝑦଴𝑎 ቁ − 𝜇൨ଶቋ |𝜏′ସ(𝑦)|,  𝑦 ∈ (𝑎e + 𝑦଴,∞),0,  otherwise.

 (4) 
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Cumulative distribution function 

 

𝐹(𝑦,𝜽) =

⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎧0,  𝑦 ∈ (−∞,  𝑦଴),12 ൦1 + erf൮−lnଵ௕ ቀ 𝑎𝑦 − 𝑦଴ቁ − 𝜇√2𝜎 ൲൪ ,  𝑦 ∈ [𝑦଴,  𝑎eିଵ + 𝑦଴),

12 ቈ1 + erfቆ𝜏ଶ(𝑦) − 𝜇√2𝜎 ቇ቉ ,  𝑦 ∈ [𝑎eିଵ + 𝑦଴, 𝑎 + 𝑦଴),12 ቈ1 + erfቆ𝜏ଷ(𝑦) − 𝜇√2𝜎 ቇ቉ , 𝑦 ∈ [𝑎 + 𝑦଴,𝑎e + 𝑦଴),
12 ൦1 + erf൮lnଵ௕ ቀy − 𝑦଴𝑎 ቁ − 𝜇√2𝜎 ൲൪ , 𝑦 ∈ [𝑎e + 𝑦଴,∞).

 (5) 

 

 

Quantile function 

𝐹ିଵ(𝛼,𝜽) =
⎩⎪⎨
⎪⎧𝑎 exp൛−[−𝜇 − √2𝜎 erfିଵ(2𝛼 − 1)]௕ൟ + 𝑦଴,  𝛼 ∈ 𝐼ଵ,𝑡ଶ ቀ𝜇 + √2𝜎 erfିଵ(2𝛼 − 1)ቁ , 𝛼 ∈ 𝐼ଶ,𝑡ଷ ቀ𝜇 + √2𝜎 erfିଵ(2𝛼 − 1)ቁ , 𝛼 ∈ 𝐼ଷ,𝑎 exp൛[𝜇 + √2𝜎 erfିଵ(2𝛼 − 1)]௕ൟ + 𝑦଴, 𝛼 ∈ 𝐼ସ,

 

 

where 𝐼ଵ = ൬0, 12 ൤1 + erf ൬−1 − 𝜇√2𝜎 ൰൨൰ ,   𝐼ଶ = ൬12 ൤1 + erf ൬−1 − 𝜇√2𝜎 ൰൨ , 12 ൤1 + erf ൬ −𝜇√2𝜎൰൨൰ , 𝐼ଷ = ൬12 ൤1 + erf ൬ −𝜇√2𝜎൰൨ , 12 ൤1 + erf ൬1 − 𝜇√2𝜎 ൰൨൰ ,   𝐼ସ = ൬12 ൤1 + erf ൬1 − 𝜇√2𝜎 ൰൨ , 1൰. 
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3.3. Parameter estimation 

Estimates of the unknown parameters of the chosen probability distribution are 
commonly obtained by the method of moments, the method of maximum 
likelihood, or the method of relative least squares (Cohen, 1951; Johnson et al, 
1994). Here, we describe two possible methods for five-parameter log-normal 
distributions. Similar transformations define both discussed distributions. Hence, 
we describe methods of parameter estimation simultaneously. The idea of the first 
method is to minimize a specific loss function. The second method is based on 
maximum likelihood estimation. 

Let 𝐘 = (𝑌ଵ, … ,𝑌௡) be a random sample from the LN5 distribution or the 
mLN5 distribution and 𝒚 = (𝑦ଵ, … ,𝑦௡) be the realization of this random sample. 
The LN5 and mLN5 distributions have parameters given by vector 𝜽 =(𝑎, 𝑏, 𝜇,𝜎ଶ,𝑦଴), and 𝜽෡ = ൫𝑎ො, 𝑏෠, 𝜇̂,𝜎ොଶ,𝑦଴ෞ൯ denotes the vector of estimated 
parameters. 

3.3.1. Triangular method 

The triangular method (see Fig. 2) is motivated by minimizing the difference 
between theoretical and empirical cumulative distribution functions over both 
probability and observed values. To accommodate for the non-symmetry of log-
normal distribution, observed values are inversely transformed to normal 
distribution. 

Estimated parameters 𝛉෡ minimize statistic 𝐾, i.e. 𝛉෡ = arg min𝛉∈𝚯𝐾(𝐲,𝛉), 
 

 𝐾(𝐲,𝛉) = ෍ቆ𝑢௜ − 𝑢௧௛௘௢௥,௜𝑢௧௛௘௢௥,௜ ቇଶ௡
௜ୀଵ + ෍൫𝑝௜ − 𝑝௧௛௘௢௥,௜൯ଶ௡

௜ୀଵ . (6) 

 
Here, 𝑝௜ = ௜௡ାଵ is a empirical probability; 𝑝௧௛௘௢௥,௜ = 𝐹(𝑦௜ ,𝜽) is a transformation 
of 𝑦௜ to range (0,1), where 𝐹(𝑦,𝜽) is the probability distribution function of the 
LN5 or the mLN5 distribution; any function 𝑢௜ = ଵఙ (𝜏(𝑦௜ ,𝑎, 𝑏, 𝑦଴) − 𝜇) is an 
inverse transformation of observed values 𝑦௜ to standardized normal distribution, 
where 𝜏 is an inverse function to the function 𝑡; 𝑢௧௛௘௢௥,௜ = 𝛷ିଵ(𝑝௜) is 
transformation of 𝑝௜, where 𝛷 is the cumulative distribution function of 
standardized normal distribution. The first term in 𝐾 statistic Eq.(6) belongs to 
the relative least squares method, and the second term belongs to the probability 
optimization method. The triangular method described here differs from the one 
proposed in (Budík, 2019). In practice, it has been shown that using the value 𝑢௧௛௘௢௥,௜ in the denominator instead of 𝑢௜ (see the method of relative least squares) 
leads to a more accurate estimation of the parameters. 
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Fig. 2. Illustration of the triangular method. 

 

 

3.3.2. Local maximum likelihood method 

Maximum likelihood estimate of parameters 𝜽 is a vector 𝜽෡MLE =൫𝑎ො, 𝑏෠, 𝜇̂,𝜎ොଶ,𝑦଴ෞ൯, that satisfies ℒ൫𝜽෡MLE|𝐘൯ ≥ ℒ(𝜽|𝐘),∀𝜽 ∈ 𝚯, for a given random 
sample 𝐘 and the likelihood function ℒ(𝜽|𝐘) =  ∏ 𝑓(𝑌௜ ,𝜽)௡௜ୀଵ . We refer to 𝑙(𝜽|𝐘) = 𝑙𝑛 ℒ(𝜽|𝐘) as the log-likelihood function. 

Likelihood function for a observation of a random sample 𝒚 = (𝑦ଵ, … ,𝑦௡)ୃ 
is given by 

 

ℒ(𝜽|𝒚) =  ෑ 1√2𝜋𝜎  exp ൜− 12𝜎ଶ ൣ𝜏௝(𝑦௜) − 𝜇൧ଶൠ |𝜏′௝(𝑦௜)|௡
௜ୀଵ௬೔∈ு

, 𝑗 = 1, . . . , 𝐽, 
 
where 𝐻 = ⋃ 𝐻௝௃௝ୀଵ , 𝐻௝ are supports of the density function 𝑓 from Eqs.(2) and 
(4), 𝐽 = 2 for the LN5 distribution and 𝐽 = 4 for the mLN5 distribution. 

It was shown that under certain conditions log-likelihood function of LN3 
distribution approaches infinity (Cohen, 1951). One of the possible parameter 
estimation methods is the local maximum likelihood estimate (LMLE). 
Convergence to a local maximum of the likelihood function has been shown for 
LN3 distribution (Wingo, 1975; Griffiths, 1980). As the LN5 and mLN5 
distributions are generalizations of the LN3 distribution, the log-likelihood 
function 𝑙(𝜽|𝒚) approaches infinity when 𝑦଴ → min(𝑦ଵ, … , 𝑦௡) for both LN5 and 
mLN5 distributions. To find a reasonable parameter estimate, it is necessary to 
assume that 𝑦଴ < min(𝑦ଵ, … ,𝑦௡). Then log-likelihood function takes the form 
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 𝑙(𝜽|𝒚) = −𝑛 𝑙𝑛√2𝜋 − 𝑛 𝑙𝑛𝜎 − 12𝜎ଶ෍ൣ𝜏௝(𝑦௜) − 𝜇൧ଶ + ෍𝑙𝑛ห𝜏′௝(𝑦௜)ห,௡
௜ୀଵ

௡
௜ୀଵ  (7) 

 

for 𝑗 = 1, . . . , 𝐽. The local maximum likelihood estimate 𝛉෡LMLE is the solution of 
a system of equations 
 ∂𝑙(𝜽|𝒚)∂𝜃௣ = 0,  𝑝 = 1, … ,5,     where     𝜃௣ ∈ 𝛉 = (𝑎, 𝑏, 𝜇,𝜎ଶ,𝑦଴). 
 

This system does not yield any analytical solution for all parameters. 
However, the estimates of parameters 𝜇 and 𝜎ଶ can be expressed as 

 
 𝜇̂ = 1𝑛෍𝜏௝௡

௜ୀଵ (𝑦௜), 𝜎ොଶ = 1𝑛෍ൣ𝜏௝(𝑦௜) − 𝜇൧ଶ௡
௜ୀଵ , 𝑗 = 1, … , 𝐽, (8) 

 
which imply a possibility to obtain profile log-likelihood (Sprott, 2000) from Eqs. 
(7) and (8) as follows: 
 
 𝑙൫(𝑎, 𝑏, 𝜇)|𝒚൯ = −𝑛 𝑙𝑛√2𝜋 − 𝑛 𝑙𝑛𝜎ො − ௡ଶ + ∑ 𝑙𝑛ห𝜏ᇱ௝(𝑦௜)ห, 𝑗 = 1, … , 𝐽௡௜ୀଵ , (9) 

 
and estimate 𝛉෡LMLE as a maximization of expression Eq.(9). 

4. Results 

4.1. Application in hydrology 

To illustrate the capabilities of the LN5 and mLN5 distributions, we apply the 
procedure described above to the data the Czech Hydrometeorological Institute 
provided. They are two datasets; the first consists of 𝑛 = 36160 observations of 
the average daily flow (𝑚ଷ𝑠ିଵ) of the Morava River at the Kroměříž station, 
Czech Republic, the second set contains 𝑛 = 29190 observations of the average 
daily flow (𝑚ଷ𝑠ିଵ) of the Dyje River at the Podhradí station, Czech Republic. 
The underlying process is time-based; however, long-term behavior is often 
studied in hydrological practice, and it is commonly assumed that data are 
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independent (Sangal and Biswas, 1970). Hence, we will consider provided data 
as a random sample. Discharge measurements are not exact, and provided data 
are rounded to two decimal places. 

We compare the five-parameter log-normal distribution LN5 and its 
modification mLN5 with generalized gamma distribution (Cox et al., 2007), 
generalized Weibull distribution (Mudholkar et al, 1996), Cauchy two-piece 
distributions (Rubio and Hong, 2016) and the three-parameter variant LN3 
(Sangal and Biswas, 1970). We estimate the parameters using the local maximum 
likelihood method with optimization by Nelder-Mead method, (Millard, 2013). 
Estimates of parameters for log-normal distributions for the Morava and the Dyje 
Rivers are given in Table 1. 

The log-likelihood for the distribution of mLN5 is the highest, and the log-
likelihood for the distribution of LN3 is the lowest. Moreover, all distributions are 
compared using Akaike information criteria listed in Table 2. 
 
 

Table 1. LMLE parameter estimates and log-likelihood for the random sample of daily 
average discharge of the Morava and the Dyje Rivers for LN3, LN5, and mLN5 
distributions. 

  𝑎ො 𝑏෠ 𝜇̂ 𝜎ොଶ 𝑦଴ෞ 𝑙 
Morava LN3 – –   3.4550 0.8581 2.3797 -173 479.0 

LN5 98.4527 0.9610 -1.1396 0.8878 2.0099 -173 454.5 
mLN5 91.2712 0.9360 -1.0630 0.8983 1.7339 -173 439.9 

Dyje LN3 – – 1.6497 0.8599 0.0928 -87 366.5 
LN5 2.5375 1.1975 0.7245 0.6311 -0.0874 -86 671.71 

mLN5 2.3037 1.2605 0.7673 0.6108 0.0199 -86 655.36 
 

 

Table 2. Akaike information criteria (AIC) of the generalized gamma, generalized Weibull, 
Cauchy two-piece, LN3, LN5 and mLN5 distributions for the random sample of daily 
average discharge of the Morava and the Dyje Rivers. The lowest value is in bold. 

 GenGamma GenWeibull Two-Piece LN3 LN5 mLN5 
Morava 346 985.0 348 146.1 350 879.4 346 964.0 346 919.0 346 889.8 

Dyje 173 738.3 173 588.5 175 270.2 174 739.1 173 353.4 173 320.7 

 

Figs. 3 and 4 show the relative differences between empirical and estimated 
exceedance curves. See Appendix E of the Supplementary material for a 
comparison of histograms with density estimates. The analysis of the relative 
errors of the exceedance shows that, of the tested distributions, the mLN5 
distribution is able to most accurately model both the middle part and the tails of 
the exceedance curve, which is very important when describing extreme 
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hydrological and climatological events. Deviations on the left side of the curve 
are apparently caused by extreme values of flow rates, which do not correspond 
to the expected course of the curve due to the length of the observed period. At 
the right end of the curve, deviations are probably associated with measurement 
errors of low flows. 

 

 

 
Fig. 3. Exceedance curves for the Morava River. Upper: The empirical exceedance curve (black 
dashed line) and fitted exceedance curves for the generalized gamma (blue line), generalized 
Weibull (orange line), Cauchy two-piece (green line), LN3 (red line), LN5 (light blue line) and 
mLN5 (pink line) distributions. Lower: Relative difference of estimated and empirical 
exceedance curves. 
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Fig.  4. Exceedance curves for the Dyje River. Upper: The empirical exceedance curve (black 
dashed line) and fitted exceedance curves for the generalized gamma (blue line), generalized 
Weibull (orange line), Cauchy two-piece (green line), LN3 (red line), LN5 (light blue line) and 
mLN5 (pink line) distributions. Lower: Relative difference of estimated and empirical 
exceedance curves. 

 

4.2. Application in climatology 

To illustrate the mLN5 distribution’s capabilities, we applied it to daily total 
precipitation, average daily atmospheric pressure, and average daily air 
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temperature datasets provided by the Czech Hydrometeorological Institute. The 
precipitation dataset (mm) from the Žatec station includes 44739 observations, 
with 17110 days of recorded precipitation. The atmospheric pressure dataset (hPa) 
from the Dukovany station comprises 13514 observations, and the temperature 
dataset (°C) from the Lysá hora station contains 21915 observations. For 
temperature data, an alternative parameterization (Appendix C of the 
Supplementary material) is necessary for the mLN5 distribution to prevent 
overflow during parameter estimation. 

Fig. 5 displays the empirical and estimated exceedance curves for the Žatec 
station. Traditionally, exceedance curve estimation focused solely on days with 
measurable rainfall. However, the application of LN5 and mLN5 distributions 
enables parameter estimation for exceedance curves on both precipitation and 
non-precipitation days. While significant differences are evident between 
empirical and estimated curves using the LN3 distribution, such discrepancies are 
notably absent with the LN5 and mLN5 distributions. 

 
 

 
Fig. 5. The empirical exceedance curve (rain) for the Žatec station (black dashed line) and fitted 
exceedance curves for the LN3 (blue line), LN5 (orange line) and mLN5 (green line) 
distributions. 

 

For average temperature, we found that using values proportional to 
potentially radiated energy (according to the Stephan-Boltzmann law) instead of 
Celsius degrees yields better empirical and estimated curve agreement. Fig. 6 
shows the empirical and estimated exceedance curves for atmospheric pressure at 
Dukovany and temperature (converted to radiated energy) at Lysá hora. The 
graphs indicate a near-perfect match in the middle range, though a small sample 
size may cause imperfections at the margins for pressure data. This mLN5 
transformation can be extended to other climatological data, considering factors 
like air humidity and sunshine duration and intensity. 
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Fig. 6. The empirical exceedance curve (black dashed line) and fitted exceedance curves for 
the mLN5 (blue line) distribution for atmospheric pressure A for Dukovany, and temperature 
B for Lysá hora.  

 

 

5. Discussion and conclusions 

In this paper, we introduced the five-parameter log-normal distribution (LN5) and 
its modification (mLN5), offering alternatives to the commonly used three-
parameter log-normal distribution (LN3) (Sangal and Biswas, 1970), generalized 
Weibull distribution (Mudholkaret al., 1996), generalized gamma distribution 
(Cox et al., 2007) or Cauchy two-piece distributions (Rubio and Hong, 2016) for 
hydrological and climatological data analysis. We provided formulas for their 
probability density, cumulative distribution, and quantile functions, and outlined 
parameter estimation methods. Future research could enhance these models, 
exploring methods like moments estimation and properties of local maximum 
likelihood estimates. 

Hydrological and climatological data have unique characteristics, with 
uncertainties in both measured values and exceedance probabilities. Traditional 
least squares methods assume accurate exceedance probabilities but error-prone 
values, while probability optimization assumes precise values but uncertain 
probabilities. Our triangular method, minimizing deviations in both dimensions, 
emerges as particularly suitable for such data. It is also effective for asymmetric 
exceedance curves, common in hydrology and climatology. As part of exploring 
the practical applications of the mLN5 distribution, we endeavored to model the 
exceedance curves for medical data, and once again, we observed a highly 
favorable agreement between the empirical and theoretical exceedance curves. 
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The triangular method, particularly with inverse transformation, requires 
data compatible with normal distribution transformation (e.g., LN2, LN3). While 
this paper doesn’t delve into the triangular method’s theoretical aspects, our 
simulation study (Budík and Budíková, 2020) (see Appendix F of the 
Supplementary material) indicates its effectiveness, especially in challenging 
extrapolations. Its computational efficiency is proven in processing extensive 
Central European climatological and hydrological datasets, with detailed results 
to be published separately. 

Natural processes often produce data that mixes distributions. For example, 
flood-induced flow changes affect exceedance curve parameters and may even 
lead to changes in the distribution itself due to natural causes such as overtopping 
of reservoirs that may change flow mechanisms from groundwater to surface, etc. 
We are currently developing a heuristic approach to enhance the accuracy of 
modeling in such complex scenarios and anticipate publishing the results later. 
Based on the analysis of hundreds of datasets on average daily flows, we have 
concluded that there is a certain degree of inverse dependency between the 
parameters 𝑏 and 𝜎. As 𝑏 increases, 𝜎 decreases, and vice versa. Furthermore, for 
streams with large catchment areas (on the order of 104 km2), the parameter 𝑏 is 
close to 1. In contrast, for streams with smaller catchment areas, the parameter 𝑏 
can deviate from 1 in both directions. Its values are influenced by the geological 
characteristics of the catchment, the quantity and quality of vegetation, and the 
precipitation regime.  

This study has several limitations. The LN5 and mLN5 distributions mark a 
significant step in modeling exceedance curves, particularly for extreme event 
probabilities, aiding in understanding and adapting to climate change. However, 
the analyzed data may not always meet independence and identical distribution 
assumptions. Our proposed procedures, considering data heterogeneity, 
autocorrelation, and seasonality, have shown promising results in modeling 
exceedance curves, but further research is needed in this direction. We focused on 
two parameter estimation methods: the triangular method and local maximum 
likelihood. Other methods like Bayesian estimation or L-moments could be 
explored, though they assume precise exceedance probabilities, often unmet in 
real data. We acknowledge that utilizing a five-parameter distribution typically 
involves significant computational intensity. A specific challenge in parameter 
estimation arises from the non-smooth nature of the probability densities 
associated with the LN5 and mLN5 distributions. Nevertheless, these drawbacks 
are counterbalanced by the fact that both distributions effectively capture not only 
the central tendency but also the entire exceedance curve. While analyzing the 
average daily discharge on the Morava River and the Dyje River, it was revealed 
that the mLN5 distribution yielded the lowest AIC value among the six 
distributions investigated (refer to  

 
Table 2). Furthermore, it exhibited the most favorable trajectory of relative 

estimation errors, as depicted in Figures 3b and 4b. It’s important to note that 
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unlike earlier distributions used for exceedance curves, the LN5 and mLN5 
distributions enable concurrent analysis of days with precipitation and those 
without precipitation. Further research should aim to refine the mLN5 distribution 
and investigate other potential models for better approximating hydrological and 
climatological data. 

Average daily precipitation totals, average daily temperature, and average 
daily air pressure from the CHMI stations can be found at the following address: 
https://www.chmi.cz/historicka-data/pocasi/denni-data/Denni-data-dle-z.-123-
1998-Sb. Average daily flow rates are available for download at 
https://isvs.chmi.cz/ords/f?p=11002:HOME:9046927352185:::::. The source 
code related to this research is available on GitLab at 
https://gitlab.ics.muni.cz/9607/ln5. 
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